# Design of Two-Stage Experiments with an Application to Spillovers in Tax Compliance

Guillermo Cruces, *U. of Nottingham & CEDLAS-UNLP*Dario Tortarolo, *U. of Nottingham & IFS*Gonzalo Vazquez-Bare, *UC Santa Barbara*Julian Amendolaggine, *CEDLAS-UNLP*Juan Luis Schiavoni, *CEDLAS-UNLP* 

UCSB Applied Micro Economics Lunch

February 11, 2022

### Design of Partial Population Experiments

- Goal: estimate within-group spillovers
  - ► Households in villages
  - Employees in firms
  - Students in schools
- Two-step design:
  - Groups randomly divided into treatment "intensities" (saturations)
  - Units within each group randomly assigned to treatment and control
- Compare units across groups with different treatment intensities

### Experimental design: example



### Experimental design: example



### Experimental design: example



## Designing PP Experiments

- Key choices:
  - ▶ Number of saturations and within-group probabilities
  - Probability of each saturation  $q_0, q_1, q_2, ...$  (this talk)
  - Within-group assignment mechanism (this talk)
- Key inputs:
  - ▶ Parameters (outcome variances, intracluster correlations,...)
  - ► Variance of estimators (this talk)
  - Power function to calculate power, MDE (this talk)

# Challenges for Designing PP Experiments

- Two-stage design
- Multiple treatments
  - Compare units exposed to different saturations
- Within-group correlations (clustering)
- Heterogeneity in group sizes
  - Group sizes tend to vary widely in practice

### Existing tools for designing PP Experiments

- Hirano and Hahn (2010), Baird et al (2018)
  - ► Homoskedasticity, random effects structure
  - Ignore group size heterogeneity
- Software (e.g. Stata's power command) makes restrictive assumptions about group size distribution
  - **Equally-sized groups,**  $N_T$  proportional to  $N_C$ ,...

# Cruces et al (2022)



Distribution of group sizes

# Haushofer and Shapiro (2016, QJE)



Distribution of group sizes

# Giné and Mansuri (2018, AEJ Applied)



Distribution of group sizes

# Imai et al (2020, JASA)



Distribution of group sizes

It affects the variance of estimators

$$\mathbb{V}[\hat{\beta}] \approx \sigma^2 \left[1 + \rho(ICC, \bar{n}, Var(n_g))\right]$$

- ▶ Ignoring  $Var(n_g)$  underestimates  $\mathbb{V}[\hat{\beta}]$  → overestimates power
- It affects inference and power calculations
  - Normal approx may be inaccurate if groups are "too heterogeneous"
  - ► Carter et al (2017), Djogbenou et al (2019), Hansen and Lee (2019)



$$G = 95$$
,  $\bar{n} = 23.3$ ,  $sd(n_g) = 0$ ,  $\sigma_Y^2 = 1$ ,  $ICC = 0.2$ 



$$G=95,\; \bar{n}=23.3,\; sd(n_g)=15.2,\; \sigma_Y^2=1,\; ICC=0.2$$



### This paper

- We derive asymptotic variance approximations allowing for:
  - Multiple treatments
  - General intracluster correlation and heteroskedasticity
  - Group size heterogeneity
  - Varying probabilities across groups
- Calculate power and MDEs
- Our formulas can be applied in a wide range of designs
  - ► Two-stage, PP, clustered, stratified experiments...
- We conduct a field experiment on tax compliance in Argentina

### Setup

- Random sample of groups  $g=1,\ldots,G$  with units  $i=1,\ldots,n_g$
- Total sample size  $n = \sum_{g} n_{g}$
- First stage: randomly divide groups into categories:

$$T_g \in \{0, 1, 2, \dots, M\}, \quad \mathbb{P}[T_g] = q_t$$

Within each group, assign binary individual-level treatment:

$$D_{ig} \in \{0,1\}, \quad \mathbb{P}_{g}[D_{ig} = d | T_{g} = t] = p_{g}(d,t)$$

# Setup

Estimands:

$$\beta_{dt} = \mathbb{E}[Y_{ig}|D_{ig} = d, T_g = t] - \mathbb{E}[Y_{ig}|T_g = 0]$$

- ▶ Direct effects =  $\beta_{1t}$
- ▶ Spillover effects =  $\beta_{0t}$
- Second moments:

$$\begin{split} \sigma_{dt}^2 &= \mathbb{V}[Y_{ig}|D_{ig} = d, T_g = t]\\ \rho_{dt} &= cor(Y_{ig}, Y_{jg}|D_{ig} = d, D_{jg} = d, T_g = t) \end{split}$$

### Setup

• Estimation strategy:

$$Y_{ig} = \alpha + \sum_{t=1}^{M} \beta_{0t} (1 - D_{ig}) \mathbb{1}(T_g = t) + \sum_{t=1}^{M} \beta_{1t} D_{ig} \mathbb{1}(T_g = t) + \varepsilon_{ig}$$

• Equivalent to:

$$\hat{\beta}_{dt} = \bar{Y}_{dt} - \bar{Y}_{00}$$

Allow for correlated errors within groups

#### Main Result

#### Asymptotic Approximation

Under regularity conditions, if

$$\max_{g \leq G} \frac{n_g^2}{n} \rightarrow 0, \quad \frac{\sum_{g=1}^G n_g^4}{n^2} \leq C < \infty,$$

then:

$$\hat{\beta}_{dt} \stackrel{a}{\sim} \mathcal{N}(\beta_{dt}, V_{dt})$$

where:

$$V_{dt} = \frac{\sigma_{dt}^{2}}{q_{t} \sum_{g} n_{g} p_{g}(d, t)} \left\{ 1 + \rho_{dt} \frac{\sum_{g} n_{g}(n_{g} - 1) \mathbb{P}_{g}[D_{ig} = d, D_{jg} = d | T_{g} = t]}{\sum_{g} n_{g} p_{g}(d, t)} \right\} + \frac{\sigma_{00}^{2}}{q_{0} n} \left\{ 1 + \rho_{00} \left( \frac{\sum_{g} n_{g}^{2}}{n} - 1 \right) \right\}$$

#### Main result: intuition

- Variance:  $\mathbb{V}[\hat{eta}_{dt}] = \mathbb{V}[ar{Y}_{dt}] + \mathbb{V}[ar{Y}_{00}]$  allowing for:
  - ▶ Heteroskedasticity:  $\sigma_{dt}^2 \neq \sigma_{d't'}^2$
  - ▶ Intracluster correlation:  $\rho_{dt} \neq 0$
  - ▶ Unequal probabilities between groups:  $p_g(d,t) \neq p_{g'}(d,t)$
  - Group size heterogeneity:  $Var(n_g) \neq 0$

#### Main Result: Intuition

Condition:

$$\max_{g \le G} \frac{n_g^2}{n} \to 0$$

restricts the relative size of the largest group

- ► Ensures that no group "dominates" the sample
- Condition:

$$\frac{\sum_{g=1}^{G} n_g^4}{n^2} \le C < \infty$$

bounds the fourth moment of the distribution

Rules out fat tails (outliers)

#### Power and MDE calculations

• Based on the normal approximation, the power function is

$$\Gamma(\beta_{dt}) \approx 1 - \Phi\left(\frac{\beta_{dt}}{\sqrt{V_{dt}}} + z_{1-\alpha/2}\right) + \Phi\left(\frac{\beta_{dt}}{\sqrt{V_{dt}}} - z_{1-\alpha/2}\right)$$

- Depends on:
  - ▶ Treatment effect  $\beta_{dt}$
  - Group sizes  $\{n_g\}_{g=1}^G$  and total sample size n
  - ▶ Assig mech:  $\{q_t\}_t$ ,  $\{p_g(d,t)\}_{t,g}$ ,  $\{\mathbb{P}_g[D_{ig}=d,D_{jg}=d|T_g=t]\}_{t,g}$
  - Outcome moments  $\{\sigma_{dt}^2, \rho_{dt}\}_t$

# Choice of $\{q_t\}_t$

- Optimal choice requires defining an optimality criterion
  - How to combine variances of multiple estimators
- Optimal design literature has proposed several alternatives
- We discuss two scenarios:
  - Unconstrained designs: minimize the average of all estimator variances (A-optimality)
  - Constrained designs

# Choice of $\{q_t\}_t$ : unconstrained optimization

#### A-optimal design

The solution to the optimal design problem:

$$\min_{q_0,q_1,\dots,q_M} \sum_{t=1}^M \left\{ \mathbb{V}[\hat{\beta}_{0t}] + \mathbb{V}[\hat{\beta}_{1t}] \right\}, \quad q_t > 0, \quad \sum_{t=0}^M q_t = 1$$

is:

$$q_0^* = \frac{\sqrt{2MB_0}}{\sqrt{2MB_0} + \sum\limits_{t>0} \sqrt{B_t}}, \quad q_t^* = \frac{\sqrt{B_t}}{\sqrt{2MB_0} + \sum\limits_{t>0} \sqrt{B_t}}, \quad t>0,$$

where  $\{B_t\}_t$  are constants depending on  $\{n_g\}_g$ ,  $\{p_g(d,t)\}_{d,t,g}$  and  $\{\mathbb{P}_g[D_{ig}=d,D_{jg}=d|T_g=t]\}_{t,g}$ ,  $\{\sigma^2_{dt},\,\rho_{dt}\}_t$ 

# Choice of $\{q_t\}_t$ : incorporating constraints

- ullet Researchers may need to incorporate constraints in choice of  $q_t$ 
  - ► Logistical, administrative, etc
- We provide an example in our field experiment
  - "Minimax-like" approach with fixed number of treated

# Within-group treatment assignment

- ullet We want to assign exactly  $n_g p_t$  units to treatment
- But  $n_g p_t$  may not be an integer (e.g.  $p_t = 0.5$ ,  $n_g = 11$ )
- ullet Let  $\xi_{m{g}} \in \{0,1\}$  be a random adjustment factor and let

$$N_g^1 = \lfloor n_g p_t \rfloor + \xi_g \mathbb{1}(n_g p_t \notin \mathbb{N})$$

be the (random) number of treated in group g with  $T_g = t$ 

• Setting  $\mathbb{P}_g[\xi_g=1|T_g=t]=(n_gp_t-\lfloor n_gp_t \rfloor)\mathbb{1}(n_gp_t\notin\mathbb{N})$  gives:

$$\mathbb{E}[N_g^1|T_g=t]=n_g p_t, \quad \mathbb{P}_g[D_{ig}=1|T_g=t]=p_t$$

### Direct and spillover effects in tax compliance

- We teamed up with a large municipality in Greater Buenos Aires
- Neighbors are required to pay a monthly bill on their real estate
- Information campaign with personalized letters
  - One-page letter informing of new electronic billing option
  - Instructions on how to sign up and pay online
  - Information on current billing period and past due debt
- Are there spillovers between neighbors from the same block?

#### Example of the intervention letter



ID: XXXXX TITULAR: DIRECCIÓN: CAP MADARIAGA Nº LOCALIDAD: 11 de Septiembre C.P.: 1657 PARTIDA: XXXXXXX/7 De esta manera, nos cuidamos entre todos al reducir la circulación u también cuidamos el medio ambiente. Es una PARTIDA: XXXXX/7 Cuota 10 vencimiento 10 de octubre 2020: 347,29 Deuda año en curso\*: 1.702.58 Deuda años anteriores\*: 289,54 JOÓMO PAGAR? Ingresando a tasas.tresdefebrero.gov.ar completá los datos: 1) Podés pagar ONLINE con DESCARGÁ O PAGÁ TU BOLETA ado - En el momento desde nuestra web. Obteniendo el código de pago electrónico noro popar desde la plataforma de tu banco o caiero automático. 2) Podés papar en EFECTIVO en CLICKEÁ ESTE BOTÓN apipago - DESCARGALA o levá tu NÚMERO DE PARTIDA. miboleta tresdefebrero.apv.ar

Por dudas comunicate con nosotros a **reclamos.mistasas@tresdefebrero.gov.ar** 

¡Muchas gracias!

### PP Experiment: Design

- We randomly divide blocks into four categories:
  - $ightharpoonup T_g = 0$ : pure controls with prob  $q_0$
  - $ightharpoonup T_g=1$ : 20% treated with prob  $q_1$
  - $ightharpoonup T_g = 2$ : 50% treated with prob  $q_2$
  - $ightharpoonup T_g = 3$ : 80% treated with prob  $q_3$
- ullet We set up a system of eqs to incorporate constraints on  $\{q_t\}_t$

# Constrained choice of $\{q_t\}_t$

- Choose  $q_1, q_2, q_3$ , with  $q_0 = 1 q_1 q_2 q_3$
- The total number of letters sent (*L*) should equal the expected number of treated:

$$L = n(0.2q_1 + 0.5q_2 + 0.8q_3)$$

- ullet Categories  $T_g=1$  and  $T_g=3$  are symmetric, so  $q_1=q_3$
- This leaves two probabilities to be determined:  $q_2$  and  $q_3$
- Idea: balance variances across assignments

# Constrained choice of $\{q_t\}_t$

- ullet The "hardest" effects (smallest cells) to estimate are  $eta_{03}$  and  $eta_{11}$ 
  - ▶ Spillover effect in 80% groups and direct effect in 20% groups
- We choose  $q_2$  and  $q_3$  by setting:

$$\mathbb{V}[\hat{\beta}_{03}] = \mathbb{V}[\hat{\beta}_{02}]$$

based on our variance approximation

• We assume  $\sigma^2=0.25$  (upper bound for binary outcomes) and  $\rho\approx 0.1$  (based on baseline data)

# Sample sizes

|             | Blocks | Control Obs           | Treated Obs           |
|-------------|--------|-----------------------|-----------------------|
| $T_g = 0$   | 1, 102 | 19, 105               | 0                     |
| $T_g = 1$   | 1, 100 | 15,049                | 3,864                 |
| $T_g = 2$   | 680    | <b>5</b> , <b>898</b> | <b>5</b> , <b>904</b> |
| $T_{g} = 3$ | 1,100  | <b>3</b> , <b>707</b> | 15, 281               |
| Total       | 3,982  | 43,759                | 25,049                |
|             |        |                       |                       |

MDEs range from 2.6 to 3.3 p.p.

# Treated groups: Payment rate (Oct'20 bill)

Figure: Payment rates in levels



# Treated groups: Payment rate (Oct'20 bill)

Figure: Difference relative to pure control group



# Untreated groups: Payment rate (Oct'20 bill)

Figure: Payment rates in levels



# Untreated groups: Payment rate (Oct'20 bill)

Figure: Difference relative to pure control group



# Diff treated/pure controls (Oct'20 bill)



# Diff. untreated/pure controls (Oct'20 bill)



### Summary

- Framework to calculate power and MDE in PP experiments
  - ▶ Allow for group size heterogeneity, heteroskedasticity, ICC,...
  - Derive optimal choice of group-level probabilities
- Application to tax compliance in Argentina
  - Strong and significant direct effects of the letters
  - ▶ No clear evidence of reinforcement effects between treated
  - ▶ Some evidence of within-neighbor spillovers in highest saturation

Thank you!